Neural Factorization Machines for Sparse Predictive Analytics Abstract web applications의 predictive tasks는 categorical variables을 modeling하는게 필요하다. categorical data user IDs demographics genders occupations standard machine learning에서는 binary features의 set으로 변환을 했다 (one-hot encoding). 결과적으로 feature vector는 highly sparse한 결과물이 생긴다. 이러한 sparse data를 효과적으로 학습하기 위해서는 features 사이에 interactions를 설명하는게..